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ABSTRACT. In this paper, we classify surfaces at a constant distance from
the edge of regression on a translation surface of Type 1 in the three
dimensional simply isotropic space ]Ié satisfying some algebraic equations
in terms of the coordinate functions and the Laplacian operators with
respect to the first, the second and the third fundamental forms of the

surface. We also give explicit forms of these surfaces.
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1. INTRODUCTION

Let x : M —E™ be an isometric immersion of a connected n-dimensional
manifold in the m-dimensional Euclidean space E™. Denote by H and A
the mean curvature and the Laplacian of M with respect to the Riemannian
metric on M induced from that of E™, respectively. Takahashi proved that
the submanifolds in E™ satisfying Ax = Ax, that is, all coordinate functions
are eigenfunctions of the Laplacian with the same eigenvalue A € R, are either
the minimal submanifolds (H = 0) of E™ or the minimal submanifolds of
hypersphere S~ in E™ [18].

As an extension of Takahashi theorem, Garay studied hypersurfaces in E™
whose coordinate functions are eigenfunctions of the Laplacian, but not neces-
sarily associated to the same eigenvalue in [10]. He considered hypersurfaces
in E™ satisfying the condition

Ax = Ax, (1.1)

where A €Mat (m,R) is an m x m- diagonal matrix, and proved that such
hypersurfaces are minimal in E” and open pieces of either round hyperspheres
or generalized right spherical cylinders. Related to this, Dillen, Pas and Ver-
straelen investigated surfaces in E? whose immersions satisfy the condition

Ax = Ax + B, (1.2)

where A €Mat (3,R) is a 3 x 3-real matrix and B € R? [8]. In other words,
each coordinate function is of 1-type in the sense of Chen [7]. The notion of an
isometric immersion x is naturally extended to smooth functions on submani-
folds of Euclidean space or pseudo-Euclidean space. The most natural one of
them is the Gauss map of the submanifold. In particular, if the submanifold is
a hypersurface, the Gauss map can be identified with the unit normal vector
field to it. Dillen, Pas and Verstraelen studied surfaces of revolution in the
three dimensional Euclidean space E3 such that its Gauss map G satisfies the
condition

AG = AG (1.3)

where A € Mat (3,R) [9]. Tarakci and Hacisalihoglu defined the surface M/ at
a constant distance from the edge of regression on a surface M and investigated
some properties of M/ [19]. Cakmak and Tarakci investigated the surface
at a constant distance from the edge of regression on a surface of revolution
indicated by M/, condition that M is denoted by a surface of revolution in E?
[5]. Saglam and Kalkan defined the surfaces M7 at a constant distance from
the edge of regression on a surfaceM in E$ [14]. Yurttancikmaz and Tarakci
investigated the relationship between focal surfaces and surfaces at a constant
distance from the edge of regression on a surface [22].
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Yoon studied translation surfaces in the 3-dimensional Minkowski space
whose Gauss map G satisfying the condition (1.3) and also translation sur-
faces in a 3-dimensional Galilean space Gg satisfies the condition

AXZ'Z )\iXi, (14)

where A; € R and provided some examples of new classes of translation surfaces
[20, 21]. Baba-Hamed, Bekkar and Zoubir classified all translation surfaces
in the 3-dimensional Lorentz-Minkowski space R} under the condition (1.4)
[2]. Bekkar and Senoussi studied the translation surfaces in the 3-dimensional
Euclidean and Lorentz-Minkowski space under the condition

II1
A ri=piry,

where ;; € R and A™ denotes the Laplacian of the surface with respect to the
third fundamental form III [3]. They showed that in both spaces a translation
surface satisfying the preceding relation is a surface of Scherk. Aydin and Sipus
studied constant curvatures of translation surfaces in the three dimensional
simply isotropic space [1, 16]. Karacan, Yoon and Bukcu classified translation
surfaces of Type 1 satisfying AVx; = \; x;, j = 1,2 and A™x; = \;x;, \; € R
[4, 12].

In this paper, we classify the surfaces at a constant distance from the edge
of regression on a translation surface of Type 1 in the three dimensional simply
isotropic space under the condition A/x; = \;x;, J = I, I, III, where ); € R.
A’ denotes the Laplace operator with respect to the fundamental forms I, IT
and ITI.

2. PRELIMINARIES

A simply isotropic space I3 is a Cayley—Klein space defined from the three
dimensional projective space P(R?) with the absolute figure which is an ordered
triple (w, f1, f2), where w is a plane in P(R3) and f1, fo are two complex-
conjugate straight lines in w. The homogeneous coordinates in P(R3) are
introduced in such a way that the absolute plane w is given by xg = 0 and the
absolute lines f1, fo by g = 1 +ixe =0, g = 21 — izo = 0. The intersection
point F(0:0:0: 1) of these two lines is called the absolute point. The group
of motions of the simply isotropic space is a six-parameter group given in the

T T

i — Z1 — Z2 — &3
affine coordinates = = oy == 3 by

T=a+xcost —ysinb
J=b+xsinf +ycosd (2.1)
Z=c+ +c1r + cy + 2,

where a,b, ¢, c1,ce,0 € R. Such affine transformations are called isotropic con-
gruence transformations or i-motions.
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Isotropic geometry has different types of lines and planes with respect to
the absolute figure. A line is called non-isotropic (resp. completely isotropic)
if its point at infinity does not coincide (coincides) with the point F. A plane
is called non-isotropic (resp. isotropic) if its line at infinity does not contain F
(resp.otherwise). Completely isotropic lines and isotropic planes in this affine
model appear as vertical, i.e., parallel to the z-axis. Finally, the metric of the
simply isotropic space I3 is given by

ds?® = dz® + dy®.

A surface M immersed in I} is called admissible if it has no isotropic tangent
planes. For such a surface, the coefficients F, F, G of its first fundamental form
are calculated with respect to the induced metric and the coefficients L, M, N
of the second fundamental form, with respect to the normal vector field of a
surface which is always completely isotropic. The (isotropic) Gaussian and
(isotropic) mean curvature are defined by

LN — M? EN —-2FM + GL
EG—p2 H=hth= EG—F;r ’
where ki, ko are principal curvatures, i.e., extrema of the normal curvature
determined by the normal section (in completely isotropic direction) of a sur-
face. Since EG — F? > 0, for the function in the denominator we often put

K = kiky = (2.2)

W? = EG — F?. The surface M is said to be isotropic flat (resp. isotropic min-
imal) if K (resp.H) vanishes. The unit normal vector field of M is the isotropic
vector N = (0,0, 1) since it is perpendicular to all non-isotropic vectors [1, 13,
16, 17].

Definition 2.1. Let M and M" be two admissible surfaces in I} and Np be a
isotropic unit normal vector at a point P of the surface M. Take a unit vector
at a point P

Zp = dix,+dsx, + dsNp, (23)
where x,, x, are tangent vectors at P and d? + d3 = 1. If there is a function
h defined by

h : M- M",

h(P) = P+rZp,
where r is constant, then the surface M" is called the surface at a constant
distance from the edge of regression on M. M and M” are shown by the pair
(M,Mh). If di = dy = 0, then we have Zp = rNp and so M and M" are

parallel surfaces.

Now, we represent parametrization of surfaces at a constant distance from
the edge of regression on M. Let x(u,v) be a parametrization of M. In this
case, {Xy, X, } is non-isotropic orthonormal bases the surface M. Let Np be
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a isotropic unit normal vector at a point P and di,ds,d3 € R be constant
numbers. Then we can write a parametric representation of MP" is
x"(u,v) = x(u, v)+rZ(u, v).
Thus we obtain
x" (u,v) = x(u, v)+r (dyx,+dox, + dzN(0,0,1)). (2.4)
If we take rd; =0, rdy = pu, rds = v, where n? + p? = r2. Thus we get
x"(u, v) = x(u, v)+nx,+px, +yN(0,0,1). (2.5)

It is well known in terms of local coordinates {u,v} of M the Laplacian oper-
ators AT, AT AT of the first, the second and the third fundamental forms
on M are defined by

Aly — 1 {8 (Gxu va)_a(qu Exv>] (2.6)
VEG — F? |0u \ VEG — F2 W \VEG—F?2)]|’
0 (NXUMXU)
Al L | QuAVIN =M (2.7)
VIN —M2| 0 (qu—va) ’

~0v \WVIN — M?

K ( Ixy — YX, )
VEG—F? | 0u\(LN — M?)VEG _ F?

Mx=-T5r | s Ve — X%, (28
v ((LN — M2?)VEG — F? )
where
X = EM?-2FLM + GL?,
Y = EMN —FLN+ GLM — FM?,
Z = GM?—-2FNM + EN?

2,3, 4,9, 11, 12].

3. TRANSLATION SURFACES IN I3

In order to describe the isotropic analogues of translation surfaces of constant
curvatures, we consider translation surfaces obtained by translating two planar
curves. The local surface parametrization is given by

x(u,v) = a(u) + B(v). (3.1)
Since there are, with respect to the absolute figure, different types of planes in I}
, there are in total three different possibilities for planes that contain translated
curves: the translated curves can be curves in isotropic planes (which can be
chosen, by means of isotropic motions, as y = 0, resp. & = 0); or one curve is
in a non-isotropic plane (z = 0) and one curve in an isotropic plane (y = 0); or
both curves are curves in non-isotropic perpendicular planes (y — z = 7, resp.
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y + 2z = m). Therefore, the obtained translation surfaces allow the following
parametrizations:
Type 1: The surface M is parametrized by

x(u,v) = (u,v, f(u) + g(v)) , (3-2)

and the translated curves are a(u) = (u,0, f(u)), 8(v) = (0,v,g(v)). Thus,
surfaces at a constant distance from the edge of regression on a translation
surface of Type 1 is given by

x"(u,v) = (utn, v+ p, (f(w)+0f (W) + (9(0) + pg'(v) +7),  (3.3)
Type 2: The surface M is parametrized by

x(u,v) = (u, f(u) + g(v),v) (3-4)

and the translated curves are a(u) = (u, f(u),0), S(v) = (0,g(v),v). In order
to obtain admissible surfaces, ¢'(v) # 0 is assumed (i.e. g(v) #const.).The
surfaces at a constant distance from the edge of regression on translation surface
of type 2 is given by

x"(u,v) = (u+n, (f(w) +0f' () + (gv) + ug'(v)) o+ p+7),  (3.5)

Type 3: The surface M is parametrized by
1
x(u,0) = 5 (f(u) +g(v), u —v+m, uto) (3.6)
and the translated curves are
1 s s 7r s
a(w) = 5 (F), u+ 3, u=72).80) = (90), 5 —v. T+v). (37
In order to obtain admissible surfaces, f'(u) + ¢'(v) # 0 is assumed (i.e.
f'(u) # —¢'(v) = a = constant)[16]. The surfaces at a constant distance from
the edge of regression on translation surface of type 3 is given by

(f(w) +nf'(u) + (9(v) + pg'(v)),
Xh(u,v)=§ u—v+mT+n—p, . (3.8)
ut+v+n+pt+y
In this paper, we will investigate surfaces at a constant distance from the edge
of regression on a translation surface of type 1.

4. SURFACES AT A CONSTANT DISTANCE FROM THE EDGE OF REGRESSION
ON A TRANSLATION SURFACE OF TYPE 1 SATISFYING Alx/= \;x]
In this section, we classify surfaces at a constant distance from the edge of
regression on a translation surface of Type 1 in I} satisfying the equation
I_h h
A'xi= Xy, (4.1)

where \;€R, i=1,2,3 and
Alx'= (Alx}f, Alx] AIX';) ,
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where

x{ =u+n, xb =v+p, x5 =(f(u)+nf'(u)+ () + pg' (v)) +7.

For the surface given by (3.3), the coefficients of the first and second funda-
mental forms are

E=1 F=0 G=1, (4.2)
L:f//+nflll, M:07 N:g//"’ug”/, (4.3)
respectively. The Gaussian curvature K” and the mean curvature H” are

i + ,’7.]1'///) _|_ (g// + /Jg///)
Kh _ " " 2 " Hh _ (.f
(" +nf") (9" + ng”), 5 ;
respectively.
Suppose that K" satisfies the condition K" = 0. In this case, we define as a

surface satisfying that condition isotropic flat. Then, from (4.4) we can write

(f"+nf")(g" + ng") =0 (4.5)

In above differential equation, for the best case, i.e. (f”+nf") = 0 and
(¢" + ng"") = 0. So, the solutions of (4.5) are given by

(4.4)

flu) = canef% + cou + c3,
g(v) = cap’e # + v+,

where ¢; € R. If H* = 0, then
2

u _u
flu) = a?+617726 n + cou + C3,
2
v 2 v
glv) = —ay + cypte” W + csv + cg,

where ¢; € R. By a straightforward computation, the Laplacian operator on
M" with the help of (4.2) and (2.6) turns out to be

Alxit = (0, 0, = (/" +nf") = (¢" + ng")). (4.6)
Suppose that M" satisfies (4.1). Then from (4.6), we have
= (" nf") = (g + ng") = X(F g+ nf +pg +7), (4.7)

where A € R. This means that M” is at most of 1-type. First of all, we assume
that M" satisfies the condition Alx? = 0. We call a surface satisfying that
condition is a harmonic surface or isotropic minimal. In this case, we get from
(4.7)

_ (f// + nfl//) _ (g// + /,Lg/”) — O (4.8)
Here u and v are independent variables, so each side of (4.8) must be equal to
a constant, call it a. Hence, the two equations

—(f"+nf")=a=(g"+ng"). (4.9)
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Its general solutions are

2

u _u
f(u) = —ag +nee +outc,

F(w) = —aut+ nere 4 + s
2
v 2 A
g(v) = @ + picge” w + csv + cg,

(4.10)

g (v) = av — pege” v + cs,
where a, c; € R. In this case, M" is parametrized by (3.3) with (4.10).

Theorem 4.1. Let M" be a surface at a constant distance from the edge of
regression on a translation surface of Type 1 given by (8.3) in 1. If M" is
harmonic or isotropic minimal, then it is congruent to an open part of the
surface (3.3) with (4.10), where [ and g are given in (4.10).

If A # 0, from (4.7), we have
="+ AN M = g + g+ Aug’ + Ag+ M =0 (411)

Here u and v are independent variables, so each side of (4.11) is equal to a
constant, call it a. Hence, the two equations

—f" A M =a=[pg" + 9" + A FAg+ M) (412)
Their general solutions are given by

flu) = ¢ 4 cre” 1 + g cosuV A + ez sinuv/A,

aA — A (4.13)
g(v) = — )\7 + cge” i+ c5cos vV + cgsin vV,
where a,c; € R. So M" is parametrized by
u+1,
Clagyt®

x"(u, v) = (C2 + 0377\5) cosuv/A + (65 + C6u\5) cosvv/A

+ (03 - cznﬁ) sin uv/\ + (66 — 05;“5) sinvvA +
(4.14)
In particular, for the case (n = 3, = 2), the solution of the differential equa-
tion (4.12) respect to f(u) is given by

flu) = —% + e 4 ey cosuV2 + g sinu\@7

(4.15)
f(u) = —2ce™" — V2¢s sinuv2 + V25 cos uv/2
For the function g(v), we have
gv)=-1+ 2y cae” 2 + 5 cos V2 + g sinvv/2,
2 (4.16)

g (v) = —2c4672" — V2e5 sinuv/2 4+ V2¢6 cos uv/2
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where (u: %,)\: 2,v = 1).

Theorem 4.2. Let M" be a non harmonic surface at a constant distance from
the edge of regression on a translation surface of type 1 given by (3.3) in I3. If
the surface M satisfies the condition Alx;=)\;x;, where \;€R, i=1,2,3, then
it is congruent to an open part of the surface (4.14).

5. SURFACES AT A CONSTANT DISTANCE FROM THE EDGE OF REGRESSION
ON A TRANSLATION SURFACE OF TYPE 1 SATISFYING Allx!= )\;x"

In this section, we classify surfaces at a constant distance from the edge
of regression on a translation surface of Type 1 with non-degenerate second
fundamental form in I} satisfying the equation

Alx!= A, (5.1)
where \;€R, i=1,2,3 and
Al h_ (AIIX?AIIXQ,AIIXQL)

7

where

xP =u+n, x5 =v+p, x5 = (f(u) +0f (W) + (g() + pg'(v) + 7.

By a straightforward computation, the Laplacian operator on M” with the
help of (4.3) and (2.7) turns out to be

f///+nf(4)
2(f”+"7f”/)2 )
g +ug™
2(9”+N ///)27
4(f”+77f”,) (g//Jng///)2
- 2(f”+71f”’)2(g”+ug’“)2 . (52)
(f/+’l']f”) (f”l+77f(4>)(g,,+ﬂglll)2
2(f”+77f”’)2(g”—i-#g”’)z
£ 4nf") (o +ug” ) (o +19 D)
20" +nf")* (9" +ng'")?

Allyh_

_|_

N

The equation (5.1) by means of (5.2) gives rise to the following system of
ordinary differential equations

f/// + 77f(4)

27y o
g/// +M9(4)
— =) 4
2( +’ug,,,) 2(U+M)a (5 )
A g ) () (6 g
(f// + ,r]f///)2 (g" + Mg///)g 2(f" + nf///) ( + Ug/”) (55)

" +0f") (g +1g") (9" +ng™) _
2 (774 nf R o+ g

Ns(f+g+nf +npg +7)
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where )\; € R. This means that M" is at most of 3- types. Combining equations
(5.3), (5.4) and (5.5), we have

=24+ X (w+n) (f +0f") =X (f+nf) ==X (v+p) (g +png") 56)
+A3 (g + 1g') + Asy '

The differential equation (5.6) cannot be solved analytically according to con-
stants A1, Ag, A3. Since the remained cases with respect to A1, Ao, A3 there are
no any solutions analytically, we discuss only one case respect to constants
)\1, )\2, Ag : that )\1 = )\2 = 0, )\3 7é O, from (56)7 we obtain

—2= X3 (f+0f") = A3 (9 + pg') + Asv. (5.7)

Here u and v are independent variables, so each side of (5.7) is equal to a
constant, call it p. Hence, the two equations

—2-=X(f+nf)=p=2rs(g+ng') + Asv. (5.8)

Their general solutions are

flu) = cre”n — 2—|—p’
A3
(5.9)

v - A
g(v) = cae % + LZ23
A3

where c1, ¢, # 0 are some constants. In this case, M" is parametrized by (3.3)
with (5.9).

Definition 5.1. A surface in the three dimensional simple isotropic space is
said to be IT—-harmonic if it satisfies the condition AMx"= 0.

Theorem 5.2. Let M" be a surface at a constant distance from the edge
of regression on a translation surface of Type 1 given by (3.3) in the three
dimensional simply isotropic space 1. Then, there is no II—harmonic surface.

Theorem 5.3. Let M be a non II-harmonic surface at a constant distance
from the edge of regression on a translation surface of Type 1 given by (3.3) in
IL. If the surface M" satisfies the condition AHX?:)\ixZﬁ, where \;€R, i=1,2, 3,
then it is congruent to an open part of the surface (3.8) with (5.9).

6. SURFACES AT A CONSTANT DISTANCE FROM THE EDGE OF REGRESSION
ON A TRANSLATION SURFACE OF TYPE 1 SATISFYING AMIxh= );xh

In this section, we classify surfaces at a constant distance from the edge of
regression on a translation surface of Type 1 in ]Ié satisfying the equation

AMxi= nix?, (6.1)
where \;€R, i=1,2,3 and

I h_ (AL h ATIL_h AIIL A
A = (AT, ATMxE AME)
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where

XP =u+n, x5 =v+p, x5 = (f(u) +nf (W) + (g) + pg'(v) + 7.

Suppose that the surface has non zero Gaussian curvature, so

(f"+nf") (" + ng") #0,Yu,v € I.

By a straightforward computation, the Laplacian operator on M” with the
help of (4.2), (4.3) and (2.8) turns out to be

"
(f//+nfm)$ 9
g +ug
1(g//+ug///)37 .
IITI K — —
A" = (fF"+nf") (9" +nrg"") (6.2)
(f/+nf//)(f///+nf(4))
+ (f//+,,7f///)3
+ (gl+#g//)(gul+ug(4))
(g//_;’_“g///)f)'

Equation (6.1) by means of (6.2) gives rise to the following system of ordinary
differential equations

f/// + 77f(4)

"+ A (u+m), (6.3)
" 4)
m = Ao (v + 1), (6.4)
- 1 B 1 N (f/+,nfl/) (f///+nf(4))
(f// + nf///) (g// T Mg///) (f,/ + nf///)S

(6.5)

(g/ +M9”) (g/// +Ng(4)) _
(9" + pg")? sl
where A1, Ao and A3 € R. This means that M" is at most of 3- types. Combining
equations (6.3), (6.4) and (6.5), we have
1

*W+)\1(U+n)(f +nf")y =X (f+nf') =

f+g+nf +upgd +7)

1
(9" +ng") (6.6
X (v+p) (g 4 pg") + X3 (g + png') + Asy.

This nonlinear differential equation (6.6) cannot be solved analytically accord-
ing to constants A1, A2, A3. Since the remained cases are not occur with respect
to A1, A2, A3, we discuss only one case respect to constants A1, A2, A3: that
A1 = A2 = A3 = 0. From (6.6), we obtain

1 1

_(f//+77f///) = (g//+ug///>' (6'7)

Here u and v are independent variables, so each side of (6.7) is equal to a
constant, call it p. Hence, the two equations

1 1
T P T ey

(6.8)
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Their general solutions are

’LL2 2 _u
f(u)z——+c1n—e "+ cou + c3,
2p p 6.9
2 (6.9)
g(v) = — 4+ cg—e ¥ + 50 + cg,
2p p

where for some constants ¢;,p # 0. In this case, M" is parametrized by (3.3)
with (6.9).

Definition 6.1. A surface in the three dimensional simple isotropic space is
said to be ITI-harmonic if it satisfies the condition AMIx"= Q.

Theorem 6.2. Let M" be a surface at a constant distance from the edge of
regression on a translation surface of Type 1 given by (3.3) in the three dimen-
sional simply isotropic space I3. If M" 4s III-harmonic, then it is congruent
to an open part of the surface (3.3) with (6.9).

Theorem 6.3. Let M" be a non III-harmonic surface surface at a constant
distance from the edge of regression on a translation surface of Type 1 given by
(3.8) in the three dimensional simply isotropic space 13. Then, there is no the
surface M" satisfies the condition AMIxt=X\;x" where \;€R.
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